
XForms

An introduction to XForms as a basis for multi-modal

forms

Thomas Uhrig

Hochschule der Medien, Stuttgart

Abstract. Forms are a common element of today's web-sites. They can
be found in search-engines, online-shops or social-communities - mostly
implemented in HTML and supported by JavaScript. But the increas-
ing amount of diverse devices connected to the internet brings up a con-
ceptual problem of HTML: the violation of separation between data and
view.

A solution to solve this problem, called XForms, is presented in this
paper. After a general introduction to the technology, an approach how
XForms can be used to build multi-modal user interfaces is described.
This approach called XFormsMM is based on a paper of Mikko Honkala
and Mikko Pohja and on the idea of extending XForms with modality-
dependent style-sheets. It shows how the separation between data and
view can lead to very �exible user interfaces. Henceforth, an example
user interface including code snippets and pictures is given. Afterwards,
the adaptation capabilities of XForms and XFormsMM is outlined. A
closing discussion and conclusion will complete the paper.

Keywords: XForms, HTML, Multimodality, Adaptive User Interfaces

1 Introduction

HTML forms together with JavaScript are the de facto standards to enable user
interaction in modern web-sites. Nevertheless, they are su�ering from di�erent
problems. These problems appear especially by devising web-sites for various
devices or modalities. Besides problems around scripting and others, the main
issue is the violation of separation between data and view in HTML forms.

This violation of a well known principal of computer science has many im-
pacts. The view of a form strongly depends on its data, because the data is mixed
with the form markup. Therefore, it's not possible to provide di�erent views on
the same data. Also, there is no real data structure, which means that an im-
portant abstraction layer is missing. Hence, working in teams of form designers
and data designers (e.g. a team working at the back-end of a web-application)
is hardly possible. HTML forms don't provide a logical form structure either,
as they only focus on a visual structure (e.g. with tables or div-elements).

These conceptual lacks HTML forms have, will lead to problems in combina-
tion with diverse devices and multimodality. They make it impossible to present
single-authoring forms1 on di�erent devices (e.g. PCs and cellphones) and in
di�erent modalities (e.g. in a visual view and an aural output) in an acceptable
way.

XForms is an approach of the W3C to improve form authoring and pro-
cessing in HTML documents (see [7]). Besides an integration of existing XML
technologies like XPath[11] and XML Schema[10] as well as validation/cal-
culation mechanisms, it provides a clean separation of data and view. Hence,
XForms provides a solution for the problems mentioned beforehand and serves
as a good basis to build multi-modal applications on top of it.

2 Related Work

A general introduction to XForms can be found in �XForms Essentials� by
Micah Dubinko [1]. Dubinko gives a well-founded introduction into XForms as
well as related topics like XML Schema or XPath. However, the book doesn't
cover options for creating multi-modal interfaces.

XForms was devised to solve problems related to form-authoring in HTML
4 [8]. Therefore, the new HTML 5 standard is a direct competitor to XForms. A
comparison of XForms, HTML 5 as well as three other XML-based languages
for web user interfaces can be found in [6]. Beside good approaches like several
new input types, HTML 5 provides still no separation between data and view.

The information given here aboutXFormsMM is based on a paper by Mikko
Honkala and Mikko Pohja from the Helsinki University of Technology
[4]. The authors follow a generic approach of how multi-modal applications can
be created using XForms and modality dependent style-sheets. Their paper also
provides a list of related work to their approach.

3 XForms

XForms is a W3C standard to improve form authoring and processing inHTML
documents. Unlike HTML, XForms is not a standalone mark-up language.
Therefore, it must be used within a host language, e.g. XHTML.

XForms consists of four major parts:

1. The model is the abstract de�nition of the data behind the form. It is
typically declared in the head-tag of an HTML document and is referenced
by so called form controls.

2. Bindings are constraints or calculations linked to a speci�c node in the
model.

1 Single-authoring means that a document is written only once for di�erent devices/
modalities, no specialized versions are needed.

3. Form controls and containers are the view on the data. They are very
similar to HTML form elements, but they don't contain any data, rather
then referring to it in the data model.

4. Events are used in XForms for communication, e.g. between a constraint
and an error-handler.

The following describes these major parts of XForms in detail. In the end, the
multimodality approach of Mikko Honkala and Mikko Pohja is introduced.

3.1 The XForms data model

XForms provides a complete separation between data and view. Therefore, an
abstract data model must be de�ned at the beginning of every XForms docu-
ment. All controls of the document will refer to that model later on.

Listing 1 shows the declaration of a data model with internal XML data.
Listing 2 shows an equivalent declaration with XML data provided by an external
�le called questionnaire.xml.

Listing 1 Declaration of an inline data model

1 <xf :mode l id="model">
2 <que s t i onna i r e xmlns="">
3 <l o c a t i o n />
4 <age/>
5 . . .
6 </ que s t i onna i r e>
7 </ xf :mode l>

Listing 2 Declaration of an external data model

1 <xf :mode l id="model">
2 <x f : i n s t a n c e id=" de f au l t " s r c=" que s t i onna i r e . xml" />
3 </ xf :mode l>

Both model declarations are de�ning a model with the id model that can be
referenced by any form control later in the document. At runtime (e.g. when the
HTML document is rendered in a browser), a concrete in-cache instance of the
model is made. If a form control referring to a speci�c node in the model is used,
it will edit the node value of the in-cache model instance. Therefore, multiple
controls can refer to a single node in the model, e.g. controls from di�erent
modalities.

3.2 Bindings

Bindings are links between a speci�c node of the instance data and a calculation
or validation expression that should be applied to this node. They are speci�ed
within the model-tag at the beginning of an HTML document. Bindings can be
used to reduce or even to avoid the necessity of JavaScript and other scripting
languages (this topic is discussed in detail in section 3.4).

Listing 3 shows the de�nition of a binding expression linked to the node age
of the data model given in listing 1. The binding expression speci�es a constraint
on the node age that its value must always be a number. If it is not a number,
an xforms-invalid exception will be thrown, which can be caught somewhere
else in the document2. The expression itself is written in XPath, a W3C (query)
language to select nodes in an XML document.

Listing 3 De�nition of a binding expression

1 <x f : b i nd nodeset="age" con s t r a i n t=" s t r i n g (number (.)) != 'NaN' " />

3.3 Form controls and containers

Form controls and containers de�ne the �front end� of an XForms document
that is presented to the user.

Form controls are similar to HTML form elements like input-�elds or buttons.
They are rendered on the screen and enable the user to edit data. But, unlike
HTML form elements, they don't contain any data but refer to a speci�c node
in the data model. This principle is known as the MVC pattern, introduced and
described in [2].

Containers are logical components that can contain other controls or contain-
ers. They can be used to structure the document not only in a visual way, but
also in a logical way. This has two bene�ts. On the one hand, the programmer
can use containers to simplify his work. Using containers, nested elements can be
treated together (e.g. to apply common attributes to all of them). On the other
hand, a logical structure is important if the rendering is not only visual. Typical
HTML documents rely on a visual structure using (e.g.) tables and div-tags,
whereas an XForms document can rely on a more abstract structure based on
containers. Whereas the visual structure is useless if the device or target changes
dramatically, the more abstract structure of XForms can be adapted to the new
rendering.

2 Section 3.4 describes this process.

3.4 Events

HTML forms are static mark-ups for a user-interface riddled with data (see
section 3.1). To give life to them, programmers have to use a scripting language
like JavaScript. This brings up a couple of inconveniences:

� The use of a scripting language brings a new technology into the project
that must be learned and handled.

� The maintenance of scripts is di�cult, especially if the project is big and
multiple scripts are used.

� Scripts are focused on the visual rendering and can hardly ever be used in
another modality.

Nevertheless, the ability to execute simple �scripts� is necessary for modern web-
sites. That's way XForms provides an event-mechanism with handlers and ob-
servers based on DOM Level 2 events and binding expression (see section 3.2)
to deal with this requirement.

Events are a kind of message, thrown by a source element (e.g. a button).
They are propagated along the DOM tree from the root down (the so called
capturing phase) and from the target up again to the root (the so called bubbling

phase). During this propagation, they can be caught by event-handlers. Whilst
an event source can be any form control or binding expression, an event handler
is a special tag (a so called action) linked to a speci�c event.

Listing 4 shows an event-handler that listens on an xforms-invalid event.
Such an event is thrown e.g. if a binding expression as we see in section 3.2 is
violated. If the event-handler caches such an event, a message is shown to the
user.

The XForms speci�cation de�nes a number of di�erent events and actions
that can be used to implement complex behaviors. Examples for important
events are xforms-invalid (if a binding expression is violated), xforms-submit
(if a submit-button is pressed) or DOMFocusIn (if a new form control is focused).
Important actions are message (prompts a message to the user), setvalue (set
a value to a node) or setfocus (set focus to a control).

Listing 4 An event-handler for a xforms-invalid event

1 <xf :message l e v e l="modal" ev : event="xforms−i n v a l i d ">
2 Please ente r a va l i d age !
3 </ xf :message>

3.5 XFormsMM

Providing a complete separation of data and model as well as logical controls and
containers, XForms serves as a suitable basis to build multi-modal applications

on top of it. An approach to this called XFormsMM was presented by Mikko
Honkala and Mikko Pohja in their paper �Multimodal Interaction withXForms�
[4].

The idea behind this approach is to extend XForms (including its data
model, controls, etc.) with modality-dependent style-sheets (compare to �gure
1). These style-sheets de�ne the modality speci�c rendering for controls and
grouping containers. For example a �visual� style-sheet describes how the controls
should be organized on a screen whereas an �aural� style-sheet determines their
sequential aural output.

Fig. 1. Architecture of an XFormsMM document (based on [4])

In addition to their theoretical idea, Mikko Honkala and Mikko Pohja devised
a reference implementation for the XSmiles web-browser[12]. Figure 2 shows the
main parts of this implementation, which is described in the following.

An XForms processor provides the basis for the implementation.This pro-
cessor performs the XML parsing, the XML Schema handling and other basic
tasks needed for XForms. On top of this processor, there is a thin layer called
interaction manager. It controls the complete communication and synchroniza-
tion between the XForms document and the di�erent rendering systems.

A rendering system provides a special view on the XForms document for
a (single) modality. For example, the graphical rendering system provides a
visual view whereas the aural rendering system provides a speech output (and
respectively a visual or an aural input).

All rendering systems are operating on the same data model through the in-
teraction manager. If a rendering system changes the model, the interaction man-

Fig. 2. Architecture of an XFormsMM implementation (based on [4])

ager will immediately inform the other rendering system(s) about that change,
so that they can update themselves. This enables a simultaneous3 and supple-
mentary4 use of the di�erent modalities. A complementary5 use is also possible,
by excluding speci�c controls from a modality through the style-sheets.

4 An Example User Interface

The following part describes how a simple user interface for a questionnaire can
be implemented using XForms. Beside the visual user interface (a web-site), an
aural user interface according to XFormsMM will be given.

Figure 3 shows the example questionnaire rendered in Google Chrome
using the FormFaces[5] framework. Due to the fact that all major browsers
don't implement XForms currently, a framework must be used to translate the
XForms code into common HTML. A certain amount of frameworks address
this issue either on the server-side (e.g. betterForms or Orbeon Forms)
or on the client-side (e.g. FormFaces). Though, only a short example for a
user interface will be provided, the JavaScript-based framework FormFaces
is used as no installation is necessary.

The questionnaire is based on the model introduced in section 3.1 including
two binding constraints and a submit-method. All controls are referring to nodes
of this model. The document is structured in two logical groups (marked in green
and yellow in �gure 3) using the group container described in section 3.3. This
grouping is not visible in the visual rendering, as it is only a logical structure.
But it's �visible� in the aural rendering as a branch, as shown in listing 5.

3 This means that multiple modalities can be used at the same time. They will always
synchronize each other through the interaction manager.

4 This means that each modality can present any control.
5 This means that not every control is rendered in every modality.

Fig. 3. Visual rendering of the example in Google Chrome

Listing 5 Aural rendering of the example according to XFormsMM
>�> System: Edit user information, edit questionnaire, Submit.
<�< User: Edit user information.
>�> System:Edit location, edit age, back.
<�< User:Edit location.
>�> System:Select �Europe� or �USA�, back.
<�< User:Europe.
>�> System:Selected �Europe�. Select �Europe� or �USA�, back.
<�< User:Back.
>�> System: Edit location, edit age, back.
<�< User: Back.
>�> System: Edit user information, edit questionnaire, Submit.
<�< User: Submit.

Both renderings represent the same questionnaire with only one element con-
taining information (the location is set to �Europe� in both of them). The visual
rendering displays all controls at the same moment to the user whereas the aural
rendering serializes the interface into a sequential output.

To serialize the interface into a suitable sequential output, the aural rendering
system looks for so called focus points. A focus point can be a form control, but
also a container including other controls. Only focus points on the same level
are rendered together. This gives a nested structure to the aural output which
allows a better orientation for the user.

5 User Interface Adaptation

XForms provides an abstract language to author a form document that can be
presented by a rendering system. The particular rendering system is very free in
the way of rendering the form controls. E.g. a selection list might be rendered
by a browser in one of the three ways shown in �gure 6.

The concrete rendering of a form control can be in�uenced by speci�c at-
tributes or a style-sheet. E.g. the attribute appearance of a selection list can
be labeled as full, compact or minimal to get the left, the middle or the right

Listing 6 Di�erent renderings of a selection list (from [9])

rendering shown in �gure 6. But in the end it's on the rendering system to decide
the concrete rendering - there is no guarantee.

This situation leads to the following points:

� The adaptation of an XForms document is mainly done at runtime. The
author creates a single abstract form document that can be interpreted by
di�erent rendering systems. Especially in the case of a multi-modal approach
like XFormsMM, the author doesn't even know which modalities are avail-
able at runtime.

� The adaptation can be in�uenced at development time. By providing style-
sheets for an XForms document or for di�erent modalities, the rendering
can be speci�ed more concretely by the author.

XForms and especially XFormsMM adapt in di�erent ways. The most obvious
way is the adaptation to a speci�c modality which is the purpose of XFormsMM.
But also the adaptation to a speci�c device or a platform is possible, due to
the fact that the concrete rendering of the form controls is not prescribed. An
adaptation to di�erent languages is also possible. Because of the integration of
existing XML technologies, it is possible to externalize strings into an XML �le
and load them via an XPath reference. This enables an easy change of the
provided language for an XForms document.

6 Discussion

XForms achieved many improvements in the �eld of form authoring compared
with HTML. It forces a clean separation between data and view, integrates
existing XML technologies and provides a higher abstraction level for controls.
Among others, this solves a couple of problems related to multimodality:

� The need of scripting languages can be reduced using events and bindings.
� A document can be structured in a logical way.
� The view gets independent from the data behind and vice versa.

As a single-authoring approach, XFormsMM makes a good use of the advan-
tages of XForms. Based on the separation of data and model, XFormsMM
provides the ability to use multiple views simultaneously on the same data. The
only e�ort for the developer is the creation of style-sheets for each modality. But
this also means that the supported modalities must be known at development

time although the adaption is done at runtime.

From a pragmatic point of view, XForms is probably a �dead technology�.
XForms was supposed to become a part of XHTML 2.0, but due to technical
and political reasons the development of XHTML 2.0 was stopped - the W3C
is now focusing on HTML5. Today, XForms is barely used6 and therefore it's
not supported be nearly every major browser. Hence, it is questionable how the
future of this technology will look like.

7 Conclusion

Web forms are an established element of today's web-sites - however, their au-
thoring has di�erent problems. The W3C standard �XForms� addresses these
issues, as for example the separation of data and view. Due to this, XForms is
a suitable basis to create forms that can be presented in several modalities, as
well as simultaneously or supplementary.

XFormsMM from Mikko Honkala and Mikko Pohja and their reference im-
plementation for the XSmiles browser is one approach to use this basis. It uses
modality dependent style-sheets to present a single-authoring document in dif-
ferent modalities. The communication between them is handled by an interaction
manager synchronizing the di�erent views.

As an alternative draft to HTML5, XForms su�ered a loss of relevance in the
last few years. Although its good approaches - especially for multimodality - it's
rarely used today.

References

1. Dubinko, M.: XForms Essentials. O'Reilly (2003), http://xformsinstitute.com/
essentials/

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison-Wesley
(1994)

3. Google: Google trends for "xforms", http://www.google.de/trends/?q=xforms
4. Honkala, M., Pohja, M.: Multimodal interaction with xforms. International Con-

ference on Web Engineering pp. 201�208 (July 2006), http://lib.tkk.fi/Diss/
2007/isbn9789512285662/article9.pdf

5. Kugelman, J.: Formfaces (9 2009), http://sourceforge.net/projects/

formfaces

6. Pohja, M.: Comparison of common xml-based web user interface languages. Journal
of Web Engineering 9, 23 (2009)

7. W3C: The forms working group, http://www.w3.org/MarkUp/Forms/
8. W3C: Xforms requirements (2001), http://www.w3.org/TR/xhtml-forms-req
9. W3C: Xforms 1.0 recommendation (October 2003), http://www.w3.org/TR/2003/

REC-xforms-20031014/

10. W3C: Xml schema (2010), http://www.w3.org/XML/Schema
11. W3C: Xml path language (xpath) 2.0 (2011), http://www.w3.org/TR/xpath20/
12. XSmiles: X-smiles.org (2008), http://www.x-smiles.org/

6 E.g. Google Trends shows a dramatic decrease for the keyword XForms [3].

http://xformsinstitute.com/essentials/
http://xformsinstitute.com/essentials/
http://www.google.de/trends/?q=xforms
http://lib.tkk.fi/Diss/2007/isbn9789512285662/article9.pdf
http://lib.tkk.fi/Diss/2007/isbn9789512285662/article9.pdf
http://sourceforge.net/projects/formfaces
http://sourceforge.net/projects/formfaces
http://www.w3.org/MarkUp/Forms/
http://www.w3.org/TR/xhtml-forms-req
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/XML/Schema
http://www.w3.org/TR/xpath20/
http://www.x-smiles.org/

	XForms

